SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "db:Swepub ;pers:(Ågren Hans);pers:(Rubensson Jan Erik)"

Search: db:Swepub > Ågren Hans > Rubensson Jan Erik

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Egil, 1981-, et al. (author)
  • Core-valence double photoionization of the CS2 molecule
  • 2010
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 133:9, s. 94305-
  • Journal article (peer-reviewed)abstract
    • Double photoionization spectra of the CS2 molecule have been recorded using the TOF-PEPECO technique in combination with synchrotron radiation at the photon energies h nu=220, 230, 240, 243, and 362.7 eV. The spectra were recorded in the S 2p and C 1s inner-shell ionization regions and reflect dicationic states formed out of one inner-shell vacancy and one vacancy in the valence region. MCSCF calculations were performed to model the energies of the dicationic states. The spectra associated with a S 2p vacancy are well structured and have been interpreted in some detail by comparison to conventional S 2p and valence photoelectron spectra. The lowest inner-shell-valence dicationic state is observed at the vertical double ionization energy 188.45 eV and is associated with a (2p(3/2))(-1)(2 pi(g))(-1) double vacancy. The spectrum connected to the C 1s vacancy shows a distinct line at 310.8 eV, accompanied by additional broad features at higher double ionization energies. This line is associated with a (C 1s)(-1)(2 pi(g))(-1) double vacancy. (C-) 2010 American Institute of Physics. [doi: 10.1063/1.3469812]
  •  
2.
  • Couto, Rafael C., et al. (author)
  • Anomalously strong two-electron one-photon X-ray decay transitions in CO caused by avoided crossing
  • 2016
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • The unique opportunity to study and control electron-nuclear quantum dynamics in coupled potentials offered by the resonant inelastic X-ray scattering (RIXS) technique is utilized to unravel an anomalously strong two-electron one-photon transition from core-excited to Rydberg final states in the CO molecule. High-resolution RIXS measurements of CO in the energy region of 12-14 eV are presented and analyzed by means of quantum simulations using the wave packet propagation formalism and ab initio calculations of potential energy curves and transition dipole moments. The very good overall agreement between the experimental results and the theoretical predictions allows an in-depth interpretation of the salient spectral features in terms of Coulomb mixing of "dark" with "bright" final states leading to an effective two-electron one-photon transition. The present work illustrates that the improved spectral resolution of RIXS spectra achievable today may call for more advanced theories than what has been used in the past.
  •  
3.
  • Couto, Rafael Carvalho, et al. (author)
  • Breaking inversion symmetry by protonation : Experimental and theoretical NEXAFS study of the diazynium ion, N2H
  • 2021
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:32, s. 17166-17176
  • Journal article (peer-reviewed)abstract
    • As an example of symmetry breaking in NEXAFS spectra of protonated species we present a high resolution NEXAFS spectrum of protonated dinitrogen, the diazynium ion N2H+. By ab initio calculations we show that the spectrum consists of a superposition of two nitrogen 1s absorption spectra, each including a π∗ band, and a nitrogen 1s to H+ charge transfer band followed by a weak irregular progression of high energy excitations. Calculations also show that, as an effect of symmetry breaking by protonation, the π∗ transitions are separated by 0.23 eV, only slightly exceeding the difference in the corresponding dark (symmetry forbidden) and bright (symmetry allowed) core excitations of neutral N2. By DFT and calculations and vibrational analysis, the complex π∗ excitation band of N2H+ is understood as due to the superposition of the significantly different vibrational progressions of excitations from terminal and central nitrogen atoms, both leading to bent final state geometries. We also show computationally that the electronic structure of the charge transfer excitation smoothly depends on the nitrogen-proton distance and that there is a clear extension of the spectra going from infinity to close nitrogen-proton distance where fine structures show some, although not fully detailed, similarities. An interesting feature of partial localization of the nitrogen core orbitals, with a strong, non-monotonous, variation with nitrogen-proton distance could be highlighted. Specific effects could be unraveled when comparing molecular cation NEXAFS spectra, as represented by recently recorded spectra of N2+ and CO+, and spectra of protonated molecules as represented here by the N2H+ ion. Both types containing rich physical effects not represented in NEXAFS of neutral molecules because of the positive charge, whereas protonation also breaks the symmetry. The effect of the protonation on dinitrogen can be separated in charge, which extends the high-energy part of the spectrum, and symmetry-breaking, which is most clearly seen in the low-energy π∗ transition.
  •  
4.
  • Couto, Rafael C., et al. (author)
  • Coupled electron-nuclear dynamics in resonant 1 sigma -> 2 pi x-ray Raman scattering of CO molecules
  • 2016
  • In: Physical Review A. - : American Physical Society. - 2469-9926. ; 93:3
  • Journal article (peer-reviewed)abstract
    • We present a detailed experimental-theoretical analysis of O K-edge resonant 1 sigma-2 pi inelastic x-ray scattering (RIXS) from carbon monoxide with unprecedented energy resolution. We employ high-level ab initio calculations to compute the potential energy curves of the states involved in the RIXS process and simulate the measured RIXS spectra using the wave-packet-propagation formalism, including Coulomb coupling in the final-state manifold. The theoretical analysis allows us to explain all the key features of the experimental spectra, including some that were not seen before. First, we clearly show the interference effect between different RIXS channels corresponding to the transition via orthogonal (1)Pi(x) and (1)Pi(y) core-excited states of CO. Second, the RIXS region of 13 eV energy loss presents a triple structure, revealed only by the high-resolution measurement. In previous studies, this region was attributed solely to a valence state. Here we show a strong Coulomb mixing of the Rydberg and valence final states, which opens the forbidden RIXS channels to the "dark" final Rydberg states and drastically changes the RIXS profile. Third, using a combination of high-resolution experiment and high-level theory, we improve the vertical bar 4 sigma(-1)2 pi(1)> final-state potential-energy curve by fitting its bottom part with the experiment. Also, the coupling constants between Rydberg and valence states were refined via comparison with the experiment. Our results illustrate the large potential of the RIXS technique for advanced studies of highly excited states of neutral molecules.
  •  
5.
  • Couto, Rafael C., et al. (author)
  • Coupled electron-nuclear dynamics in resonant 1σ→2π x-ray Raman scattering of CO molecules
  • 2016
  • In: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 93:3
  • Journal article (peer-reviewed)abstract
    • We present a detailed experimental-theoretical analysis of O K-edge resonant 1σ-2π inelastic x-ray scattering (RIXS) from carbon monoxide with unprecedented energy resolution. We employ high-level ab initio calculations to compute the potential energy curves of the states involved in the RIXS process and simulate the measured RIXS spectra using the wave-packet-propagation formalism, including Coulomb coupling in the final-state manifold. The theoretical analysis allows us to explain all the key features of the experimental spectra, including some that were not seen before. First, we clearly show the interference effect between different RIXS channels corresponding to the transition via orthogonal Πx1 and Πy1 core-excited states of CO. Second, the RIXS region of 13 eV energy loss presents a triple structure, revealed only by the high-resolution measurement. In previous studies, this region was attributed solely to a valence state. Here we show a strong Coulomb mixing of the Rydberg and valence final states, which opens the forbidden RIXS channels to the "dark" final Rydberg states and drastically changes the RIXS profile. Third, using a combination of high-resolution experiment and high-level theory, we improve the |4σ-12π1) final-state potential-energy curve by fitting its bottom part with the experiment. Also, the coupling constants between Rydberg and valence states were refined via comparison with the experiment. Our results illustrate the large potential of the RIXS technique for advanced studies of highly excited states of neutral molecules.
  •  
6.
  • Couto, Rafael Carvalho, et al. (author)
  • The carbon and oxygen K-edge NEXAFS spectra of CO
  • 2020
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:28, s. 16215-16223
  • Journal article (peer-reviewed)abstract
    • We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges. The spectra show a wealth of features that appear very differently at the two K-edges. The analysis of these features can be divided into three parts; (i) repopulation transition to the open shell orbital – here the C(1s) or O(1s) to 5σ transition, where the normal core hole state is reached from a different initial state and different interaction than in X-ray photoelectron spectroscopy; (ii) spin coupled split valence bands corresponding to C(1s) or O(1s) to π* transitions; (iii) remainder weak and long progressions towards the double ionization potentials containing a manifold of peaks. These parts, none of which has correspondence in NEXAFS spectra of neutral molecules, are dictated by the localization of the singly occupied 5σ orbital, adding a dimension of chemistry to the ionic NEXAFS technique.
  •  
7.
  • Guo, J. H., et al. (author)
  • The molecular structure of alcohol-water mixtures determined by soft-X-ray absorption and emission spectroscopy
  • 2004
  • In: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 137-40:SI, s. 425-428
  • Journal article (peer-reviewed)abstract
    • We have examined the influence of the intermolecular interaction on the local electronic structure by using X-ray absorption and emission spectra of liquid methanol, water, and their mixtures (in molar ratios of 9:1 and 7:3). We find a strong involvement of hydrogen bonding in the mixing of water and methanol molecules. The local electronic structure of water and methanol clusters, where water cluster is bridging within a 6-member open-ring structured methanol cluster, is separately determined. The experimental findings suggest an incomplete mixing of water-alcohol systems and a strong self- association between methanol chain and water cluster through hydrogen bonding. The enhancement of joint water-methanol open-ring structure owes the explanation to the loss of entropy of the aqueous solutions.
  •  
8.
  •  
9.
  • Kashtanov, Stepan, et al. (author)
  • Chemical and electronic structures of liquid methanol from x-ray emission spectroscopy and density functional theory.
  • 2005
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 71:10
  • Journal article (peer-reviewed)abstract
    • We have applied x-ray emission spectroscopy and density functional theory (DFT) to study the chemical and electronic structures of liquid methanol. The x-ray emission spectra at carbon and oxygen K edges of methanol in different hydrogen-bonded clusters are simulated. It is shown that hydrogen bonding strongly influences the spectral profile of O K emission, but not the C K emission. The methanol chain and ring conformations show a distinct difference in their electronic structures. The molecular orbitals of chains are strongly localized, whereas for the ring structures they show strong delocalization characteristics and behaviorlike covalent pi orbitals in a conjugated system. A comparison of experimental spectra and DFT calculations suggests that liquid methanol comprises combinations of rings and chains of methanol molecules linked with hydrogen bonds and is dominated by structures with the size of six and eight molecules.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view